
Mapping the Semantics of
Elektra’s Configuration Database

to File Systems

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Bachelorstudium Software & Information Engineering

by

Alexander Firbas
Registration Number 11775819

to the Faculty of Informatics

at the TU Wien

Advisor: Dipl.-Ing. Dr.techn. Markus Raab, BSc

Vienna, 6th September, 2021
Alexander Firbas Markus Raab

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Firbas

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. September 2021
Alexander Firbas

iii

Abstract

The need to configure software with sophistication exceeding traditional mechanisms
gave rise to the software configuration management system “Elektra”.

In an effort to increase both compatibility and usability for administrators and application
developers alike, by removing the need to learn Elektra-specific commands, this thesis
introduces a mechanism to represent Elektra’s configuration database as a file system.

Differences and similarities between Elektra’s configuration database and traditional file
systems are analyzed, yielding a design for a bidirectional mapping between the two to
overcome the differences. Said mapping was implemented and became part of Elektra’s
tooling.

As Elektra’s configuration database is not completely isomorphic to classical file systems,
making design choices in order to bridge the gaps was imperative. Above other metrics
like performance or strict adherence to the implemented protocols, maximizing usability
was the primary concern.

Furthermore, possible semantics for write operations in Elektra’s cascading namespace
were discussed, leading to their incorporation into Elektra’s tooling.

v

Contents

Abstract v

Contents vii

1 Introduction 1
1.1 Aim & Motivation . 1
1.2 Methodology & Structure of the Thesis 2

2 Background & Related Work 3
2.1 Software Configuration Management 3
2.2 Elektra . 3
2.3 FUSE . 5

3 Design & Implementation 7
3.1 Configuration Database as File System 7

4 Discussion 12
4.1 Semantic Limitations . 12
4.2 Performance . 12
4.3 File System Permissions & Ownership 13
4.4 Platform Support . 13
4.5 The Cascading Namespace . 13

5 Conclusion 17

List of Figures 18

Bibliography 19

vii

CHAPTER 1
Introduction

1.1 Aim & Motivation

Complex software and its unforeseeable deployments demand for mechanisms to effectively
conquer the associated challenges of configuring its operation. Elektra goes beyond the
usual paradigm of application specific configuration files and provides, among others,
support for programmatic manipulation of configuration data through a unified API,
automatic validation, an expandable architecture, and a suite of tools to administrate a
systems configuration.

This thesis aims to further enhance Elektra’s tooling by offering its core functionality
as a file system. To that end, it explores under which assumptions and restrictions the
key database of the feature rich library for software configuration management Elektra
[teaa] is structurally isomorphic to a regular file system, and how this can be exploited
to create a bidirectional representation of it by means of a FUSE file system [lt].

Because the notion of a file system is universal in computing, an application providing
its services by means of such enables other applications to interface with it without the
need of modification. Furthermore, system administrators and regular users alike are
freed from the burden of having to learn how to use yet another tool, but can instead
leverage their existing knowledge of tools and workflows.

Therefore, making Elektra available as a file system could benefit the initiative in the
following ways.

First of all, for system administrators, there is no, or at least a reduced requirement to
learn Elektra specifics, such as the detailed commands to query or alter information in
the database. Instead, the core functionality of the database is entirely accessible by
means of standard UNIX tools like ls, cp, vi, and so forth. All this potentially eases
the learning effort needed, at least when core functionalities are of concern.

1

1. Introduction

Furthermore, by analogy to the well-known virtual UNIX /proc file system, enhanced
debugging capabilities are offered to system administrators, application developers and
endusers alike.

Research Questions:

To make the goal of the following work more precise, the following two research questions
have been formulated to guide this thesis:

• RQ1: In what ways is the data model of Elektra isomorphic to a file system, where
are differences, and where have assumptions to be made?

• RQ2: What are possible semantics for write operations in the cascading namespace?

1.2 Methodology & Structure of the Thesis
First, a brief theoretical discussion outlining the problems at hand and related work is
given. Building on that, a concrete implementation of the proposed file system, given by
means of collaborative participation in free and open source ElektraInitiative development,
is presented.

After describing and giving a rationale for the numerous design decisions and trade-offs
taken, the potential enhancements and disadvantages are analyzed and discussed in detail.
To conclude, the limitations of this work and possible further work are discussed.

2

CHAPTER 2
Background & Related Work

2.1 Software Configuration Management
When software becomes more complex and the users’ needs more diverse, there seems to
occur an increasing demand for more sophisticated means for software configuration; the
role of the human in this regard is explored e.g. in [FDY18]. The focus of this thesis lies
on the usability of configuration management software.

Various paradigms and philosophies have arisen aiming to satisfy this demand. A well-
known method, commonly used on UNIX systems and its descendants is to make use
of plain text configuration files, readily editable with text editors without the need for
specific tooling. For example, on GNU/Linux systems user accounts are defined in the
plain text configuration file /etc/passwd.

Additional demands such as a need for validation of configuration and context adapting
configuration can be achieved with the help of tools like libelektra, on which this
thesis builds.

2.2 Elektra
The following introduction to Elektra builds heavily upon the work of [Raa10] and
[Raa17].

Elektra is an extensible free and open source library that provides for software configura-
tion management by means of a global key database, denoted by kdb. In this database,
the atomic unit of storage is that of a Key, storing textual or binary data, and is uniquely
identified by a namespace chosen from a predefined set combined with a name. These
names are not flat, but rather structured into a /-delimited sequence of name-parts, akin
to the naming scheme employed in modern file systems. This enables the natural notion
of a key being located below another key, endowing the database its hierarchical nature.

3

2. Background & Related Work

Additionally, for each Key a set of MetaKeys may be stored. A MetaKey is similar to a
regular Key, but is always a member of the “meta:” namespace and is uniquely identified
only in conjunction with the Key it is associated with.

Definition Core Definitions

• namespace pre-defined collection of unique identifiers

• Key atomic unit of storage in Elektra, stores textual or binary data and is identified
by a namespace and an ordered sequence of textual name-parts, in notation delimited
by “/”

• Key B is below Key A iff they share the same namespace and the sequence of
name-parts of A forms a prefix of B.

• MetaKey a Key which is a member of the “meta:” namespace. It is always
associated with a Key; the combination of which identifies a textual value associated
with the MetaKey.

• Context process context, i.e. all attributes of a system process that have an
effect on the operating system’s behavior when handling requests (current working
directory, (system) user id, the process’s environment and arguments, . . .)

The operations of the database (e.g., resolving and writing keys) are only well-defined
with regards to a context.

Elektra provides for the following predefined namespaces, where each one can be thought
of as a root-node of its own hierarchy of keys, that differ in their context-dependant
semantics:

• system: is used to store information that applies to the whole system and is
static with regards the context. Modification requires super-user privileges.

• user: is used to store data belonging to the current user.

• dir: depends on the current working directory and allows for per-directory
configuration, as is common for e.g. the configuration of webservers.

• proc: allows for the inspection of the process calling Elektra and is ephemeral,
analogous to the procfs-filesystems in UNIX.

• / (cascading namespace): This namespace is special in that it does not have the
capacity to store keys itself, but rather provides a context-dependant view on the
union of all other namespaces. Any key accessed is actually resolved to some other
namespace. In case multiple keys of equal name exist in different namespaces, in its
simplest form, the key with the most “specific” namespace is chosen. For example,
keys below user: mask keys below system:.

4

2.3. FUSE

Note that this enumeration is not exhaustive, but some special namespaces such as
default: are not directly relevant to this thesis.

Elektra offers numerous additional features going beyond what is needed for this thesis
such as:

• automatic validation of configuration data with respect to a specification (spec:
namespace)

• mounting of configuration files into the database

It is evident that there are some structural analogies of Elektra’s database and traditional
file systems. This intuitive notion will later be made precise using FUSE.

2.3 FUSE
File System in Userspace (FUSE) [lt] is a free and open source library that enables the
development of file systems outside of kernel-space, i.e. in userspace.

The design of common operating systems, for example GNU/Linux, mandate filesystems
be implemented either as part of, or runtime-loadable module of the kernel, executed in
privileged mode. This allows for potentially increased performance, as inefficiencies with
regard to process context switches are reduced.

FUSE circumvents this requirement by means of a kernel module that implements the
operating system dependant interface required for filesystems, but does not handle
requests in place, but rather acts as a proxy that forwards any request to some user
program.

For this purpose, FUSE specifies an application programming interface that describes the
operation of a generic file system. In most cases, there is a strict correspondence of this
API and the set of UNIX system calls both in naming and semantics. This interface is
not required to be implemented in full: for example, any information-altering operation
could be omitted to provide a read-only file system.

This results in the benefits of:

• a rich programming environment and interoperability, as usually only a restricted
and specialized tool set is available in kernel space

• the safety and stability advantages of user space programs: failure is constrained
and may not corrupt the entire system state, access to resources can be constrained
by permission systems

• ease of use in both operation and development, as there is no need to directly deal
with the kernel (loading modules, recompiling the kernel, . . .)

5

2. Background & Related Work

This flexibility comes at the cost of possibly reduced performance, as explained in
[VTZ17].

FUSE is widely adopted and has been integrated into the Linux kernel. Prominent
examples of file systems implemented with FUSE are NTFS-3G [teab], enabling the
use of the proprietary Microsoft file system NTFS on other platforms, or SSHFS [teac],
leveraging an SSH-connection to mount a remote file system locally.

The question of how Elektra can be exposed as a (FUSE) file system is discussed in the
following chapters.

6

CHAPTER 3
Design & Implementation

3.1 Configuration Database as File System

Although the established model of a file system and Elektra’s configuration database are
heavily inspired by the mathematical notion of a tree, there are signification deviations.
First, those differences are discussed, and building on that, a proposal for a semantic of
a mapping of Elektra’s hierarchy into a file-system accounting for the differences, with
the goal of maximizing usability, is given.

3.1.1 Representing the Key Database as a File System

As previously discussed, a query to Elektra’s key database (kdb) is only well-defined
with respect to a context, i.e. a subset of an UNIX-process context (user id, current
working directory, . . .).

This necessitates the question of which (process) context to choose while querying kdb.
To select any single specific context means to restrict the view on the database to that
chosen context. For example, the user: namespace can now only be used to query
information for the particular user associated with the chosen context.

A more general approach is to avoid this decision beforehand and delegate it to the end
user. The set of all active processes on a system, enumerated by their respective process
identifiers (“pid”) poses a feasible set of options to provide:

• The set is extensible by ad-hoc creation of new process possessing the desired
attributes.

• Any active process to be configured via kdb is already present. This may ease
the debugging process, as the precise configuration data as observed from the

7

3. Design & Implementation

application to be configured is made available without the need to modify the
application at hand.

From these considerations and the structure found in the virtual /proc file system on
Linux systems, the structure of the FUSE-file system discussed in this thesis was devised:

At the root level of the file system, for each active process on the system, a directory
named after the corresponding pid is made available. As a convenience feature, these
directories may be queried for extended file attributes (xargs) that describe their process
context. As this first layer of the file system merely gives a representation of processes
on the system, it does not support write operations.

Here, due to the behavior of the user: namespace, processes whose working directory
is located below the mountpoint are hidden to prevent infinite recursions.

On the layer of directories directly below, i.e. directly below a path of the form
<mountpoint>/<pid>/, the Elektra hierarchy can now be mounted both for read
and write operations. For each of the predefined namespaces, a directory possessing the
according name is made accessible.

How this can be accomplished in detail is discussed in the next section.

|-- 41
| |-- cascading:
| | |-- dir_and_file_at_once
| | | `-- leaf
| | |-- dirkey
| | |-- elektra
| | | |-- modules
| | | `-- version
| | |-- info
| | `-- person
| | `-- name
| `-- user:
| |-- dir_and_file_at_once
| | |-- ®elektra.value
| | `-- leaf
| |-- info
| `-- person
| `-- name

Figure 3.1: Truncated illustration of the discussed structure using exemplary data

8

3.1. Configuration Database as File System

3.1.2 Differences between Conventional File Systems & Elektra

The clear distinction between “files” and “directories” made in classical file systems,
wherein files cannot have any descendants, and directories may only store information
(beside metadata) by means of descendant files and directories and not directly, does not
exist in Elektra. Rather, the only type of entity is that of a Key. On the set of all keys
in the database, a partial order is induced by the notion of one key being below another
key. This forms the basis for recursive operations whereby more than one key is affected
at once.

However, this does not imply that all keys are comparable in the mathematical sense, i.e.
no total order is formed. This means there is no “smallest” element, i.e. the hierarchy
is not necessarily rooted in a single element. As described, each namespace induces a
seperate root. This is in contrast to the model imposed by UNIX-like systems, where the
whole hierarchy is unified under a single root /.

Furthermore, Elektra’s semantics do not mandate the hierarchy to be free of “holes”:
The existence of the keys system:a and system:a/b/c does not imply the existence
of system:a/b. A traditional traversal depending on direct descendants (analogous
to the UNIX-tree command) therefore would in general fail to discover all descendant
elements.

In UNIX-like systems, additional to file system attributes of predeterminded semantics
(e.g. mtime in representing a time stamp of last modification), a common way to support
arbitrary metadata is to use so-called “Extended file attributes”, commonly referred to
as xattrs. An attribute is represented via a custom name and corresponding value.

In Elektra, the canonical way to represent metadata is through MetaKeys. Analogous
to extended file system attributes, they allow for key-value pairs to be persisted along
with keys. A restriction on MetaKeys is that the namespace identifer meta: needs to
be a prefix of their names. In to comparison to xattrs, only textual data may be stored
in MetaKeys.

As described in the first chapter, queries on Elektra’s key database are always associated
with a context, without which the semantics are not well-defined. In comparison, regular
file systems, except hidden files due to a user not possessing the required permissions,
the structure and contexts are invariant to different users, current working directory, etc.

Further features commonly found in file systems, such as a mechanism to control access,
have no corresponding representation in Elektra.

9

3. Design & Implementation

Elektra UNIX File Systems (e.g. ext4 [et])
one root per namespace single unifying root
(Meta)Key entity type files, directories, (symbolic) links . . .

hierarchy can contain “holes” connectedness is enforced
binary metadata not supported binary metadata is supported
context dependent semantics structure is static
maximum size of key names filename length and maximum file size
and contents constrained subject to filesystem-dependent

by system memory constraints

Figure 3.2: Summarized differences

3.1.3 Bridging the Differences

Definition File System Entity A file system entity here denotes anything that is
addressable by a path in a file system, e.g. a regular file, a directory, a symbolic link, . . .

Mapping Keys to File System Entities

As discussed, a traditional file system necessitates the distinction of entities as either files
or directories. A simple way of addressing this would be to interpret all keys for which
there are no keys below them, i.e. leaf nodes as files, and all other nodes as directories.
At least two problems arise:

• Under this semantic, the value of any non virtual key that has descendants is
presented as a directory. Therefore, as directories do not have a value associated to
them in contrast to files, the key’s value is inaccessible.
In the proposed implementation, this is solved by exposing a “virtual” file directly
below the affected key with base name ®elektra.value that exposes the contents
of the key directly above. This imposes the restriction that keys may no longer
possess that name.
As an example, consider the two keys system:/application with value “Appli-
cation” and system:/application/version with value “1.0”. The first key
will be interpreted as a directory due to the second key below, which poses as a
file. The virtual key system:/application/®elektra.value now acts as as
a symbolic link to make the contents (“Application”) of the masked key available.
This of course comes at the cost of forbidding the aforementioned special name.

• There must not be empty directories, as they would necessarily be treated as files.
This is in violation of the implicit contract between a file system and common UNIX-
tools such as mkdir. As the goal is to favor usability over other considerations,
a special mechanism allowing for empty directories is proposed: Whenever a call

10

3.1. Configuration Database as File System

to the FUSE-driver demanding a directory be created is issued, this intent is
persisted by setting the special MetaKey meta:fuse/directory on the newly
created key. In all pertaining operations of the FUSE file system driver, this special
flag takes precedence over the general case described above, therefore establishing
compatibility and matching user expectations.

Virtual Directories Ensuring File System Connectedness

Definition Virtual Directory A virtual directory denotes a directory of the FUSE file
system, which is not in direct correspondence to any key.

Restricting the predicate “below” only to direct descendants, it is consistent with Elektra’s
semantics for keys to exist for which no path in the induced tree of keys originating from
their respective namespace exists.

In an implementation, without any special measures, these keys would still be addressable,
but not discoverable, as directory listings only take into account direct ancestors. There-
fore, while the naive approach is truthful to the structure of the underlying database,
usability is diminished.

The reconciliation chosen in the implementation at hand is to let the file system driver
make accessible the missing directories connecting inaccessible keys with the rest of
the hierarchy. These directories do not have backing keys, which means that the strict
correspondence between file-system entities and keys is lost. Special care needs to be
taken for certain operations, e.g. renaming such a “virtual” directory results in the need
to create a new key, as there is no backing key to rename.

Mapping Metadata

Due to the above described difference, to ensure metadata persisted via the FUSE file
driver behaves as expected, there is need for a transparent translation of key names
either amending or stripping the prefix. Otherwise, applications not using Elektra could
not leverage metadata. Due to Elektra not supporting binary MetaKeys, an attempt to
write such a key results in the operation aborting with an error.

As most keys found in a typical Elektra configuration are backed by an actual file
(accessible, e.g., by the kdb file command), its regular attributes, such as ownership
information can be mirrored to the file exposed by the FUSE-driver. Furthermore, for
convenience’s sake, the path of this file can be queried as an extended file attribute.

11

CHAPTER 4
Discussion

In the previous chapters the considerations resulting in a concrete implementation of the
file system driver have been examined. The following chapter aims to put the work done
into perspective and discuss obstacles faced and potential future enhancements.

4.1 Semantic Limitations

As the proc: namespace for a given process is both only accessible from that process
and arbitrarily mutable, a faithful representation of it can in general not be given using
the tool implemented as-is.

Rather, given some target process, the mounted file system provides a viewpoint of a
state as it would have been prior to any alterations made by the process. Additional
configuration of the proc: namespace, as for example provided by optional plugins
operating on said namespace, has to be specified a priori and is not extracted from the
target process.

A possible route for amelioration could be to make Elektra fully introspectable in a
future version, yielding a direct source of truth and obsolescence for the context mocking
mechanism described in this thesis. This however poses a non-trivial undertaking whose
design trade-offs are yet to be discussed.

4.2 Performance

Performance was not a design goal, instead simplicity and therefore making the imple-
mentation less prone to programming faults was.

Especially the context mocking aspect reduces the possibility of some performance
enhancements, as the view on the database is dependent on context.

12

4.3. File System Permissions & Ownership

However, the intended use case of interactive inspection and modification by an adminis-
trator, or the seldom reads usually necessary for configuring an application put this issue
into perspective.

4.3 File System Permissions & Ownership

As Elektra has no inherent system of permissions and ownership, whereas this is a
core aspect of a file system, there is no obvious mechanism to project permission- and
ownership-related attributes bidirectionally in all cases.

Therefore, chmod and chown are currently not implemented and there also does not
seem to be an intuitive way of doing so.

Furthermore, the FUSE implementation does not signal a “not supported error” in case
the mentioned operations are invoked to enable compatibility with common tools like cp.

4.4 Platform Support

As core parts of the implementation depend upon mechanisms commonly only found on
UNIX platforms, for example /proc virtual file system or extended file system attributes,
the implementation is currently only supported on GNU/Linux distributions.

Therefore, the support for other operating system paradigms, e.g. Microsoft Windows,
would require major architectural changes and is therefore out of scope of this thesis.

4.5 The Cascading Namespace

The canonical way to interact with Elektra outside of application development is by use
of the command-line tool kdb which is shorthand for key-database.

Consider the following example illustrating an interaction directly with the kdb (version
0.9.4):

1 kdb set user:/key "Initial value"
2 #> Create a new key user:/key with string "Initial value"
3 kdb get /key
4 #> Initial value
5 kdb set /key "Modified value"
6 #> Using name system:/key
7 #> Create a new key system:/key with string "Modified value"
8 kdb get /key
9 #> Initial value

Figure 4.1: Shell interaction illustrating current semantics of the cascading namespace

13

4. Discussion

First, we as some user, set a key to an initial value (as seen in lines 1, 2). As expected,
the lookup to the cascading namespace delivers the set value (lines 3, 4).

Now, we use the same key name to modify the value (line 5). This, however, results in
the unexpected outcome of creating a new key in the system: namespace (lines 6, 7).

When accessing the key again, illustrating this behavior, the initial (not the modified!)
value is returned (lines 8, 9).

The core issue here is that key names are resolved differently depending on whether a
read or write operation is performed. This violates an implicit assumption inherent in
file systems that addresses always refer to the same entity.

As the described implementation only acts as a delegate, translating file system requests
to Elektra and vice-versa, the semantic illustrated here is also inherent to the file system
created.

As the implementation of the file system driver depends on kdb, any attempt to improve
the situation in the FUSE implementation would only mask the problems present in the
core tooling itself or introduce inconsistencies with said tooling. Therefore, the semantics
of kdb have been altered to incorporate the results found in the following discussion.

Discussion of Possible Write-Semantics

To be able to evaluate a possible semantic, desirable properties are proposed to serve as
a quality measure.

A To guarantee a property akin to the classical notions of consistency found in e.g.
[DMEM15], stating that values written to some address have to be accessible under
the same address afterwards, which can also be expressed as follows:
read(write(database_state,address,value),address) = value

(With respect to some database model, where both read and write, denote a state
transformation and address and value each representing any valid address/value
with respect to that database.)

B Transparency. The semantics of an operation should aim to minimize mental
workload and surprise.

The analysis can be conducted by evaluating two cases separately:

• Writes on keys that already exist:
In this case, a query to the cascading namespace together with the context in which
it is made references a concrete key in a well-defined manner. If property A is
to be guaranteed, the concrete key affected cannot differ from the key identified
by the query. This could be achieved by reusing the lookup semantics already

14

4.5. The Cascading Namespace

implemented in Elektra and applying them to write operations of existing keys as
well.

• Writes on keys yet to be created:

A query to a key in the cascading namespace which is not currently present cannot
be unambigously mapped to any specific namespace (system:, user:, . . .). A
semantic thus either needs to define a mapping in this case, or disable write
operations altogether.

Disabling the write operations in this case reduces the feature set and does create
the need for case distinctions on behalf of calling software, but is simple, prevents
many unintended consequences, therefore arguably abiding B better than other
choices.

If on the other hand writes are to function in any case, different strategies may be
chosen:

– A single static choice, e.g. the most general namespace system: offers
high predictability, but it can be argued that this contradicts the intuitive
understanding of the bottom-up-approach used in privilege systems (e.g. not
starting applications as root by default), or abstaining from the use of global
variables in computer programs.

– Making the choice dependent on context. For example, a sufficiently specific
namespace could be selected, e.g. dir:. This does not suffer from the problem
above, but is nonetheless an arbitrary design choice.

In any case, since the choice is not rejected (as in the first discussed possibility),
the mechanism is arbitrary to any user not intimately knowing the semantics of
Elektra. Therefore, from a usability perspective, principle B will be violated for
most users.

Regardless of the concrete semantic chosen, the use of the cascading namespace may
imply uncertainty on behalf of the user/application, since otherwise a concrete key could
be of interest rather than a lookup. Thus, a write operation to the cascading namespace
may entail unexpected consequences, for example global configuration changes where
only locale ones were desired, violating property B.

The current semantic implemented in kdb violates both principles, since, as demonstrated
property A does not hold, and the absence of A already implies the absence of B.

Based on the preceding analysis, disabling write operations to the cascading namespace
altogether is preferable over the current semantics. If, however, writes are desired, the
option of restricting writes to already existing keys proves best.

15

4. Discussion

Chosen & Implemented Semantics in kdb

For understanding the chosen implementation, the following kdb commands are intro-
duced:

• kdb set can set the value of an individual key.

• kdb meta-set can set the value of a MetaKey.

• kdb editor uses the preferred editor to edit parts of the key-database.

• kdb import imports keys from the standard input.

• kdb export exports keys to the standard output.

• kdb rm deletes one or more keys.

Based on the discussion before, the following changes have been implemented:

• kdb set and kdb meta-set: Writes to the cascading namespace are now only
allowed if the lookup succeeds. Otherwise, the operation is ambiguous and therefore
aborted.

• kdb editor and kdb import: The use of the cascading namespace is now
disabled entirely, since the use of those tools strongly implies that it is known
exactly which keys are to be modified. Therefore, using the cascading namespace
would create non-transparent behavior.

• kdb rm: Since no keys are created by this command, the ambiguity described
above does not arise here. Whenever a (cascading) key is deleted, its identity is
known.

Chosen & Implemented Semantics in the FUSE Module

As the creation of new file system entities in the cascading namespace is an ambiguous
operation (with the option of removing the ambiguity by introducing a static or dynamic
decision procedure for determining a namespace not being a feasible choice as outlined
above), it has been disabled.

However, without this core functionality, a semi-writable file system would be introduced.
This behavior is unexpected by both users and tools alike. For example, the popular
text editor vim relies on being able to create temporary files in the directory of the file
currently being edited.

Thus, it has been decided to represent the cascading namespace as a read-only (sub-)file
system.

16

CHAPTER 5
Conclusion

After giving an introduction to Elektra and FUSE, the differences between the semantics
of Elektra and common file systems were described and an implementation bridging those
differences has been elaborated on and implemented for the ElektraInitiative.

For the implementation the guiding principle for any design decision was to favor com-
patibility with existing tools and workflows over strict adherence to Elektra’s structure.

This has been achieved by creating a virtual file system which makes the whole Elektra
hierarchy bidirectionally accessible for users and tools alike.

Due to Elektra and file systems being two fundamentally different concepts, the mapping
does not preserve every minor detail. However, the intended use case is not affected by
those shortcomings.

Furthermore, the tool provides a new convenient debugging opportunity not previously
present in the Elektra project.

The core tool kdb of Elektra has also been enhanced to avoid non-transparent behavior
with regard to write operations in the cascading namespace.

Further work enabling full introspection of Elektra could be used to overcome the
limitations discussed in Section 4.1.

17

List of Figures

3.1 Truncated illustration of the discussed structure using exemplary data . . 8
3.2 Summarized differences . 10

4.1 Shell interaction illustrating current semantics of the cascading namespace 13

18

Bibliography

[DMEM15] Hendrik Decker, Francesc D. Muñoz-Escoí, and Sanjay Misra. Data consis-
tency: Toward a terminological clarification. In Osvaldo Gervasi, Beniamino
Murgante, Sanjay Misra, Marina L. Gavrilova, Ana Maria Alves Coutinho
Rocha, Carmelo Torre, David Taniar, and Bernady O. Apduhan, editors,
Computational Science and Its Applications – ICCSA 2015, pages 206–220,
Cham, 2015. Springer International Publishing.

[et] ext4 team. ext4 file system manual. https://man7.org/linux/man-
pages/man5/ext4.5.html. accessed on Mar. 12, 2021.

[FDY18] Syahrul Fahmy, Aziz Deraman, and Jamaiah H. Yahaya. The role of human
in software configuration management. In Proceedings of the 2018 7th
International Conference on Software and Computer Applications, ICSCA
2018, page 56–60, New York, NY, USA, 2018. Association for Computing
Machinery.

[lt] libfuse team. Fuse github repository. https://github.com/libfuse/libfuse.
accessed on Mar. 10, 2021.

[Raa10] Markus Raab. A modular approach to configuration storage. Master’s thesis,
TU Wien, 2010.

[Raa17] Markus Raab. Context-aware configuration. PhD thesis, TU Wien, 2017.

[teaa] ElktraInitiative team. Elektrainitiative. https://www.libelektra.org/. ac-
cessed on Mar. 10, 2021.

[teab] NTFS-3G team. Ntfs-3g, sourceforge. https://sourceforge.net/projects/ntfs-
3g/. accessed on Mar. 10, 2021.

[teac] SSHFS team. Sshfs github repository. https://github.com/libfuse/sshfs.
accessed on Mar. 10, 2021.

[VTZ17] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. To FUSE
or not to FUSE: Performance of user-space file systems. In 15th USENIX
Conference on File and Storage Technologies (FAST 17), pages 59–72, Santa
Clara, CA, February 2017. USENIX Association.

19

	Abstract
	Contents
	Introduction
	Aim & Motivation
	Methodology & Structure of the Thesis

	Background & Related Work
	Software Configuration Management
	Elektra
	FUSE

	Design & Implementation
	Configuration Database as File System

	Discussion
	Semantic Limitations
	Performance
	File System Permissions & Ownership
	Platform Support
	The Cascading Namespace

	Conclusion
	List of Figures
	Bibliography

